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Abstract. A quantal version of resonance overlap leading to global chaos is investigated. 
Classical chaos is reflected in irregular features of quantum beats in the phase space profile 
of eigenfunctions. These quantum beats are due to interference between nearby branches 
of bifurcated classical manifolds. Statistical properties of the quantum system qualitatively 
reflect the classical transition to global chaos although some discrepancies from classical 
ergodicity are found in the quantum mechanics even in the fully chaotic regime. 

1. Introduction 

The understanding of classical chaos has developed greatly since PoincarC demon- 
strated the non-integrability of the three-body problem. The famous mathematical 
work by Kolmogorov, Arnold and Moser ( K A M )  has established the condition for the 
existence of tori in formally non-integrable systems. These tori are now called KAM 

tori. However, the criterion for the occurrence of global chaos is a difficult problem 
to solve mathematically. On the other hand a physical criterion has been established 
by Chirikov (1979). He proposed that an overlap of two domains of resonances gives 
rise to globally chaotic behaviour. This is a universal mechanism leading to global 
chaos. The detailed classical mechanism of resonance overlap has been investigated 
by various authors in the past ten years (Greene 1968, 1979, Escande and Doveil 1981, 
Lichtenberg and Lieberman 1983). 

On the other hand, quantal aspects of chaotic behaviour are still controversial 
questions although some pioneering work has been done. The first question concerning 
semiclassical quantisation in non-integrable systems was raised by Einstein (1917). He 
proposed a quantisation condition based on tori, the existence of which were later the 
subject of the K A M  theory. However the characteristics of eigenfunctions when K A M  

tori are entirely destroyed have not been understood yet. Recently certain irregularities 
in energy levels and eigenfunctions have been called ‘quantum chaos’. The distribution 
of energy levels becomes irregular when the classical version of a system goes into a 
chaotic regime (Percival 1973). In such a chaotic regime energy spectra exhibit 
complicated anti-crossing and the level spacings obey the Wigner distribution (Berry 
198 1). Furthermore eigenfunctions in a chaotic regime are characterised by complicated 
nodal lines (McDonald and Kaufman 1979). However it is quite unclear how these 
features of ‘quantum chaos’ are related to the stochastic behaviour of corresponding 
classical systems. Moreover, it is known that there exists an important discrepancy 
between quantum and classical dynamics in a chaotic regime. In a study of the quantum 
version of the standard map, Casati et a1 ( 1979) found that the diffusive motion inherent 

0305-4470/87/123833 + 15S02.50 @? 1987 IOP Publishing Ltd 3833 



3834 M Toda and K Ikeda 

in the classical chaos is limited within a finite timescale for the quantum system. Such 
a limitation has been discussed in terms of Anderson localisation ( Fishman et a1 1982, 
Grempel et a1 1984). 

Although quantal aspects of chaotic behaviour have been investigated for various 
systems, resonance overlap has not been studied in detail quantum mechanically. As 
mentioned above, resonance overlap is a universal mechanism leading to global chaos. 
Therefore the understanding of a quantum version of resonance overlap will provide 
a universal picture of global chaos in quantum mechanics. The standard map is one 
model which exhibits global chaos due to resonance overlap. However, in the standard 
map it is impossible to isolate an elementary process of resonance overlap, since too 
many resonances are involved. Therefore more idealised systems should be studied. 

In this paper we aim to elucidate a quantum version of resonance overlap from 
various points of view. For this purpose we choose an ideal system which exhibits an 
overlap of resonances and investigate the following questions. (i) Do quantum systems 
exhibit certain kinds of randomness that are related to the stochastic behaviour of the 
corresponding classical systems? (ii) How do the phase space profiles of eigenfunctions 
reflect the breakup of K A M  tori and the breakdown of the EBK quantisation? (iii) Do 
quantum systems have statistical properties that reflect the ergodicity of corresponding 
classical systems? 

We summarise the contents of the following sections. In § 2 we introduce our 
model and survey briefly its classical behaviour. In § 3 we study how the characteristics 
of the eigenfunctions projected onto the action space (§ 3.1) and onto the phase space 
(§ 3.2) vary with the advance of resonance overlap. In particular, we discuss in § 3.2 
the relation between the phase space profile of each eigenfunction and the structure 
of the classical phase space. General characteristics of the eigenfunctions are revealed 
in statistical properties of transition probabilities. These are discussed in § 4 to make 
manifest how classical ergodicity is reflected in the quantum system. Section 5 is 
devoted to the conclusions of our paper and suggestions for further study. The details 
of our numerical procedure are explained in the appendix. 

2. The model 

Our model is described by the following Hamiltonian, which we call the double 
resonance model ( D R M ) :  

where f =  -ia/a8 and 8 are the canonical conjugate variables which classically corre- 
spond to the action and angle variables, respectively. We normalise our Hamiltonian 
in such a way that the Planck constant A is included in the frequency o of the driving 
force and in the coupling constants V,  ( i  = 1,2),  so that w a A-'  and V,  a K 2 .  

We choose the DRM because of the following reasons: as will be explained later, 
the classical version involves only a single pair of primary resonances, and so it 
describes an idealised process of overlap of resonances leading to globally chaotic 
behaviour. Therefore this system is appropriate for studying the elementary process 
of the global stochastisation quantum mechanically. There is also a computational 
merit. Since the classical region of chaotic behaviour is bounded in the phase space, 
the number of quantum orthogonal functions demanded to span the chaotic region is 
finite. Furthermore, this system is free from Anderson localisation, which is peculiar 
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to unbounded chaotic systems such as the standard map. Therefore, we can study 
ideal features of the semiclassical correspondence in resonance overlap. 

Next we give a brief survey of the behaviour of the classical D R M .  The model has 
two primary resonances in the vicinity of 1 = 0  and I = w .  Within each primary 
resonance domain we can approximate the D R M  by the single resonance Hamiltonian 
N, = j 2 / 2 +  V, cos e ( i  = 1,2) .  In  the domain of each resonance classical orbits are 
trapped to form elliptic orbits, and they are enclosed by the separatrix orbit I = 
Ii  f 2 f l  sin( 0/2)  ( i  = 1 ,2 ,  and I ,  = 0, I 2  = U ) .  When the overlapping parameter defined 
by 

s= 2 ( f l + V q ) / w  (2) 

is small, most of the phase space between the two primary resonances is filled with 
tori corresponding to rotational orbits. Chaotic orbits exist because of the heteroclinic 
structure of the separatrix orbits. However, they are not extended in the phase space. 
They cling to the separatrix orbits. With an increase in S the stochastic layers around 
the two primary resonances grow. When S exceeds the threshold value S,  - 0.71, they 
overlap and eventually tangle together to form global chaos which connects the two 
resonance domains (Escande and Doveil 1981). 

In figure l (b ) ,  we show the cross section of orbits (the PoincarC map) obtained at 
every period r = 21r/w of the driving force. The PoincarC maps are shown for the 
three representative values of S, i.e. S = 0.6, 0.8 and 1.0. S = 0.6 is below the threshold 
of global stochastisation. Most of the phase space is filled with tori and there exists 
a hierarchy of elliptic orbits trapped by the primary and higher-order resonances with 
rational winding numbers I = (m/ n)w.  Resonances with simple rational winding 
numbers ( n  = 1 , 2 , 3  and 4, m = 1 )  are indicated by arrows. S = 0.8 is just above the 
threshold. Stochastic layers around the two primary resonances have already over- 
lapped to form global chaotic orbits. However, a considerable portion of the phase 
space is still occupied by the non-stochastic islands composed of the stable elliptic 
orbits. The islands due to the primary resonances ( I  = 0, w )  and due to the one-half 
resonance ( I  = 0 / 2 )  are particularly noticeable. S = 1.0 is sufficiently far above the 
threshold. The phase space is almost completely covered with global chaotic orbits 
except for the small non-stochastic islands due to the two primary resonances. 

In the following we investigate how the global stochastisation classically described 
above emerges in quantum mechanics. To investigate the quantum motion described 
by the Schrodinger equation i a+ la t  = H ( f ) +  we construct a stroboscopic transforma- 
tion defined for the interval 7: 

U = T exp( -i 1: H(t') dt') ( 3 )  

where T is a time-ordering operator. This transformation corresponds to the PoincarC 
map of the classical system. Once the sets of eigenfunctions {&(e)} and eigenvalues 
{exp(iEk)} of the unitary operator U are obtained, wavefunctions $, = $( 0, n T )  at the 
nth step are expressed in terms of the initial state & as 

+,(e) = exp(i&kn)(4kl+O)6k( 0). (4) 
k 

From now on we assume V ,  = V2 = V for the sake of simplicity. Then our system is 
specified by only two parameters S and w, the latter being the quantal parameter 
proportional to A - ' .  We briefly comment on the symmetry properties of the DRM. 
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Figure 1. ( a )  Localisation diagram, ( b )  classical Poincark map and (c )  ( I ,  U) plot below 
the threshold (S=O.6), just above the threshold (S=O.8)  and sufficiently far above the 
threshold (S = 1.0). Here w = 160.3. The arrows at S = 0.6 indicate the self-similarity of 
the trapped elliptic orbits ( b )  and the corresponding clustered structures of the ( I ,  U )  plot 
(c). The inset magnifies the clusters enclosed in the square to make the hierarchy of the 
( I ,  U) plot manifest. At S = 1.0 global eigenfunctions which extend over the whole of the 
chaotic region are encircled in the ( I ,  U) plot. 

When V, = V,, the classical system is invariant under the canonical transformation 
defined by the generating function S(O', I, t )  = - ( w  - I ) O ' -  wt l .  This is an inversion 
round I = w / 2 .  However, the quantum systeAm has the same symmetry only when w 
agrees with an eigenvalue of the operator I, i.e. an integer. In this case resonant 
quantum tunnelling occurs between the two primary resonances. This phenomenon 
also occurs in the case of the standard map. To avoid such a phenomenon, which is 
irrelevant to our study of classical-quantum correspondence, we always choose w to 
be non-integral. 

3. Characteristics of eigenfunctions 

In this section we investigate how the characteristics of the eigenfunctions { &} of the 
unitary operator U vary as the overlap of resonances advances with an increase in S. 

As S increases, classical orbits which are localised in the action space become 
delocalised and finally collapse into global chaotic orbits connecting the two resonances 
which were separated in the action space. Such properties should be most directly 
reflected in the localisation characteristics of eigenfunctions projected onto the action 
space. This will be investigated in P 3.1. 
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If S is not too large, most of the classical phase space is filled with tori and the 
quantisation of tori is achieved according to the Einstein-Brillouin-Keller ( E B K )  rule. 
This implies that the profiles of eigenfunctions projected onto the phase space should 
have their counterparts in classical orbits. However, as S increases, most of the tori 
are destroyed and the EBK quantisation can no longer be applied. How do the profiles 
of the eigenfunctions change in such a regime? How are they related to the structure 
of the classical phase space? These problems are studied in 0 3.2. 

3.1. Characteristics in action space 

In figure 1( a ) ,  we present localisation diagrams which indicate the localisation charac- 
teristics of eigenfunctions. In t'?ese diagrams the abscissa indicates the eigenfunctions 
characterised by the mean action 

where pk( I )  I(u,l@k)l' stands for the weight of @ k  projected onto an action eigenfunc- 
tion U,(@) = exp( i l@) / f i  ( I  is an integer). The ordinate indicates the action eigenvalue 
1. The lines indicate the domains of I at which & satisfies pk( I )  3 0.02. The localisation 
diagrams are presented for the three representative values of S, i.e. S = 0.6, 0.8 and 
1.0, each of which is compared with the corresponding classical PoincarC map. 

At S = 0.6 most of the eigenfunctions are localised in quite small regions in the 
action space and the width of each eigenfunction agrees quite well with the range of 
the projection of the corresponding classical orbit onto the action axis. Thus the 
classical-quantum correspondence holds good in this case. As S exceeds S,, each 
eigenfunction gradually tends to extend. However, its width is not large enough to 
cover the range in the action space connected by the classical global chaos. Such a 
discrepancy is particularly marked at S = 0.8. 

To describe the above features more quantitatively, we introduce another diagram. 
Define the loca\isation width a k  of an eigenfunction & as 

We plot all the points specified by ( z k ,  ( T k )  on a single two-dimensional plane. We call 
such a diagram the Z-a plot. Examples for the three representative values of S are 
shown in figure l(c).  

At S=O.6 the phase space is almost entirely filled with the invariant tori (figure 
l ( b ) ) .  Arrows indicate tori inside the domains of the primary resonances ( I  = 0, w )  
and of the higher-order resonances ( I  = ( m / n ) w ;  n = 2 , 3  and 4, m = 1 ) .  These orbits 
are quantised and the corresponding plots are clustered as indicated by arrows in 
figure 1( c). Therefore, the classical self-similar structure of resonances is reflected in 
the existence of various scales of clustered structures in the Z-a plot. Except for the 
clustered points, most of the points lie along a definite smooth curve. They correspond 
to the classical rotational orbits flowing between the resonances. The existence of the 
smooth curve in the Z-a plot implies that there exists a good quantum number. 

At S = 0.8, the last K A M  torus has already been destroyed and global chaos has 
appeared in the classical system. Correspondingly, the localisation widths of the 
eigenfunctions are larger than those at S = 0.6. However, they are still too small to 
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connect the two primary resonances. It should be noted that the pattern in the I-a 
plot has lost its smooth structure and become slightly irregular, which implies that the 
tori are damaged and have become 'vague tori' (see 0 3.2). 

At S = 1.0 any structures between the two primary resonances disappear and the 
stochastic sea covers the greater part of the classical phase space. Correspondingly, 
the widths of some eigenfunctions grow large enough to connect the two primary 
resonances. Such eigenfunctions are 'ergodic' and lose their individuality in the sense 
that they cannot be characterised by Ik. Indeed, points in figure l ( c )  corresponding 
to these functions are all distributed along the centre line of the two primary resonances, 
i.e. I = w / 2 ,  which are enclosed by a circle in figure l (c) .  However, the relative number 
of such eigenfunctions is quite small (about 15% for o = 160.3). Other eigenfunctions 
are not 'ergodic' and they do  not lose their individuality in the sense that they can 
roughly be specified by their Ik. Their widths are not large enough to connect the two 
primary resonances. At S = 1.0 all the plotted points, except for those in the clusters 
corresponding to the elliptic orbits trapped by the two primary resonances, are scattered 
in a quite irregular manner and no structure can be seen in the I - a  plot. This implies 
that a good quantum number does not exist. 

3.2. Characteristics in phase space 

A number of representations have been proposed which project a quantum wavefunc- 
tion onto a momentum (p)-position ( q )  phase space. One of the most famous 
representations is the Wigner function which is defined by 

W ( p , q ) = l  exP(2 ipr /h )+(q-r )~*(q+r)dr / ( rrh)"  (7) 

where + ( q )  is the quantum wavefunction to be represented (Berry 1977a, Korsh and 
Berry 1981). This representation has, however, several defects. It may be negative 
and, moreover, it is accompanied by rapid oscillations of the de Broglie wavelength. 
To eliminate such undesirable properties, we have to process the Wigner function by 
an appropriate coarse graining (Takahashi and Saito 1985). 

Instead of the Wigner function we use the diagonal representation 

Q ( P ,  4 )  = l(44P, 4)12 (8) 

with respect to the coherent statef Ip, q) ,  which is an eigenstate of the annihilation 
operator a = ( p  - i q ) / d %  with an eigenvalue ( p  - i q ) / a .  This function is a probabil- 
ity distribution function which is non-negative and non-singular. Moreover, it is free 
from the rapid de Broglie oscillation, because its definition automatically involves a 
sort of coarse graining operation. We now investigate the phase space profile of 
eigenfunctions at the three representative values of S using the distribution function 
Q ( 4  6). 

3.2.1. S = 0.6-quanrised KAM tori. The I-a plot in figure 1 implies that there exists 
a good quantum number which specifies a series of KAM tori. Indeed, the phase spac:e 
profiles of the eigenfunctions agree quite well with the classical orbits in the Poincai.6 
map. We show some examples in figure 2(a) .  These are quantised libration orbits 

t The coherent state has arbitrariness of squeezing. However, the arbitrariness does not matter at all as 
long as i t  is not extremely squeezed compared with the classical phase space structure. 
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Figure 2. Typical examples of the phase space profile of eigenfunctions at three values of 
S. (a )  S = 0.6, ( b )  S = 0.8 and ( c )  S = 1.0. Here w = 160.3. Contour lines are drawn so 
that the net probability inside of each contour equals 0.3, 0.5, 0.7 and 0.9, respectively. 
See the text for explanation of (i)-(iv). 

trapped by the primary, (i), and higher-order, (ii) and (iii), resonances and a quantised 
rotation orbit, (iv). Below the threshold, most of the eigenfunctions have their counter- 
parts in classical tori. Thus a hierarchy of eigenfunctions exists, which corresponds 
to the self-similar structure of the classical phase space. There is the limitation due 
to the uncertainty principle; the quantum counterpart of classical structure finer than 
h cannot exist. 

3.2.2. S = 0.8-quantised ‘vague tori’. As expected from the I-a plot, no eigenfunction 
spreads over the classical chaotic region, although the overlapping parameter S exceeds 
the threshold of the global stochastisation. The reason is as follows: for S slightly 
larger than S,  , although the global chaos surely exists, classical chaotic trajectories 
are confined in tori for finite time intervals (Jaffi and Reinhardt 1982, Shirts and 
Reinhardt 1982). In other words, classical tori exist with finite lifetimes. They are 
partially damaged and entangle with each other in a complicated manner within small 
regions of the phase space to form global chaotic orbits. The quantum system, however, 
cannot be affected by the existence of such a tangle if its area is smaller than the 
Planck constant h. In other words, quantum mechanics repairs the damaged tori. Thus 
the quantised orbits still possess the characteristics of tori. They are what Reinhardt 
and colleagues call ‘vague tori’. 

However, the quantised ‘vague tori’ are qualitatively different from the quantised 
KAM tori. Quantisation on a KAM torus is done in such a way that the phase gains of 
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a wavefunction around closed paths on a torus are integer multiples of 27r (the EBK 
condition). The classical tori above the stochastisation threshold are damaged and are 
bifurcated into multiple branches. To make approximately closed paths on a 'vague 
torus' we have to pass through some of the bifurcated branches. The wavefunctions 
on nearby branches interfere with each other to form slowly varying beats along the 
phase space profile of eigenfunctions, as shown in figure 2 ( b ) .  The pattern of lumps 
due to such beats reflects the complicated nature of damaged tori. 

3.2.3. S = 1.0-random quantum interference. At S = 1.0 most of the eigenfunctions 
lose the shape of 'vague tori'. Compared with the case of S = 0.8, lumps due to quantum 
interference are distributed much more irregularly over much wider regions. This is 
attributed to the appearance of complicated global manifolds on which classical chaotic 
orbits are trapped (see figure 3; this is an example of an unstable manifold originating 
from a hyperbolic point). Let us try to construct a wavefunction on a chaotic manifold 
just as is done on a torus. The chaotic manifold has a much more complicated structure, 
composed of infinitely multiplicate branches. Such a structure is formed by repetitions 
of stretching and folding which are inherent in chaotic dynamics. Along a branch of 
the manifold the phase of a wavefunction varies continuously, but the phases on the 
nearby branches are random with respect to each other. Thus the wavefunction 
interferes with itself everywhere on the branches of the chaotic manifold to form lumps 
randomly distributed over the phase space region occupied by the chaotic manifold. 
The possibility of such characteristics has also been conjectured by Berry (1977b). 

Figure 3. Phase portrait of a complicated global manifold on which classical chaotic orbits 
are trapped at S = 1.0. 

Although the eigenfunctions exhibit these random features, only a few of them 
extend over the classical stochastic sea, as we mentioned in § 3.1. We show in figure 
2 ( c ) ,  (i)-(iv), the prototypes of the phase space profile of the eigenfunctions. Their 
relative numbers are shown for w = 160.3. Their explanation is as follows. 

( i )  An example of quantised elliptic orbits trapped in the domain of one-half 
resonance (about So/"). The quantised elliptic orbits still exist in the domain of the 
primary resonances. However, it is quite surprising that a quantised elliptic orbit still 
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remains in the domain of one-half resonance, which classically has disappeared into 
the stochastic sea (figure l ( b ) ) .  This fact implies an anomalous stability of quantum 
systems (Heller 1984). Except for these eigenfunctions all others appear to be quite 
random. 

(ii) An example of an eigenfunction which spreads over the one-half resonance 
(about 20%). 

(iii) An example of an eigenfunction which connects the primary resonance and 
the one-half resonance (about 30%). 

(iv) An example of an eigenfunction which extends over the whole region of the 
classical stochastic sea (about 15% ). 

Other eigenfunctions extend only over one or other of the primary resonances 
(about 30% ). The relative number of ‘ergodic’ eigenfunctions (iv) gradually increases 
with a decrease of the Planck constant h. This implies the recovery of the classical 
ergodicity. We discuss this problem in detail in § 4. 

4. Statistical properties 

In the previous section we have shown that all the eigenfunctions of the unitary operator 
U are not ‘ergodic’ even in the fully chaotic regime. In this section we study how the 
statistical properties of the quantum system qualitatively reflect the transition to global 
chaos. In particular we elucidate the quantitative disagreement between the classical 
and the quantum systems in the fully chaotic regime. 

Let li) and I f )  be initial and final states, respectively. When there is no degeneracy 
in the quasi-energy spectra of the unitary operator U, then 

describes the long time average of the probability that the system starting from the 
initial state li) is found in the state If). 

In integrable systems each eigenfunction has its counterpart in a classical torus 
and the quantal probability density C ( i l f )  agrees in the semiclassical limit with the 
long time average of the probability of the classical trajectory staying on the correspond- 
ing torus. Therefore, C ( i l f )  of integrable systems can be predicted by their classical 
behaviour. In particular, C (  i l f )  depends significantly on whether the initial state I i )  
and the final one If) are on the same torus or not. If not, a contribution to the 
probability comes from quantum tunnelling, which has an exponential dependence on 
the Planck constant h and approaches zero rapidly in the semiclassical limit. Such 
non-ergodic features are characteristic of integrable systems. 

In chaotic classical systems all tori in the stochastic sea are completely destroyed. 
A classical trajectory starting from a particular initial state chosen in the stochastic 
sea travels over the whole of the stochastic sea and loses its initial memory after a 
lapse of sufficiently long time. Provided that the classical behaviour can predict the 
quantum probability distribution, C( ilf) should be independent of both I i )  and I f )  if 
they are chosen in the stochastic sea. However, the results in the previous section 
imply that this is not the case. 

Roughly speaking, for S >  S ,  the phase space consists of two regions, i.e. the 
stochastic sea and the non-stochastic islands. The boundary of the stochastic sea 
around the primary resonance is approximated by a classical orbit of the single 
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resonance Hamiltonian 

H,=$*+ v c o ~  e (10) 

I=*&'(E,-VcosO). (11) 

with an appropriate energy Hs = E,, i.e. 

Let us choose the initial state Ii) to be an eigenstate of Hs specified by an energy 
eigenvalue Es, i.e. HsIEs) = EsIEs). If Es is much larger than E,, the corresponding 
classical orbit is entirely contained in the stochastic sea, while it is contained in the 
non-stochastic island if Es << E,. Therefore, by increasing Es from its classical lower 
bound - V, the initial state can be moved from the inside of the non-stochastic island 
through the boundary orbit into the stochastic sea (figure 4). We choose a final state 
I f )  to be an action eigenstate. 

Figure 4. Schematic diagram illustrating the boundary between the stochastic sea and the 
non-stochastic islands. The bold broken curves are classical orbits of Hs. For Es> E ,  
they are entirely in the stochastic sea, while they are contained in the non-stochastic island 
for Es < E,. The short broken curves indicate the separatrix orbits. The shaded area 
represents the chaotic region. 

First we show in figure 5 the shape of C(EsII) at three representative values of S 
when an initial state is entirely contained in the stochastic regions. Here we choose 
the separatrix orbit ( E s  = V) as the initial state because the vicinity of the separatrix 
is always occupied by the stochastic layers. The quantal distributions agree or disagree 
with the classical ones in the following manner. On a logarithmic scale the shape of 
C(E,JZ) looks like a plateau. The plateau consists of two steps with different heights 
and each of the steps spreads over the domain of one of the primary resonances. These 
steps are due to the elliptic motions in the resonance domain and such flat steps also 
exist for the classical probability distribution. As the domains of the two primary 
resonances are separated by KAM tori for S < Sc ,  the difference in the step height is 
expected a.t S = 0.6. However for S > Sc, whereas in the classical case the step difference 
should disappear, it remains quite large for the quantum distribution. In particular, 
a notable difference exists just above Sc. At S = 0.8 the ratio of heights is estimated 
104-105 for W ( a  K') - IO2. The difference decreases with an increase in S, but it 
remains significant even at S = 1 .O. 
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Figure 5. The shape of C(Es = VI/) on a logarithmic scale at three values of S. V indicates 
the range of the separatrix orbit projected onto the action space. Here w = 30.3. 

To see more clearly the disagreement with the classical ergodic behaviour in the 
chaotic regime, we study how the quantal probability distribution C (  i l f )  depends on 
the initial state as we vary the Planck constant. For S > S c ,  we can, by varying E,, 
bring an initial state from the inside of the non-stochastic island to the stochastic sea 
across the boundary with energy EB. Then classical probability distributions in the 
vicinity of the second primary resonance ( I  - w ) should increase steeply from zero to 
some finite value as E,  exceeds EB. For the quantum system, let us introduce an 
integrated probability in thk vicinity of the second primary resonance 

where the width A is chosen to be an appropriate value comparable to the width of 
the primary resonance, i.e. A - v'V. In figure 6 we show the initial state dependence 
of C ( E , ,  w )  for various values of w oc K*. C ( E , ,  U )  exhibits a transition which is 
qualitatively similar to that anticipated classically. For E ,  < EB the logarithm of 
C ( E , / w )  varies linearly with the initial state. Moreover, it decreases in proportion to 
the Planck constant. These facts imply that the probability leaks out of the domain 
of the first primary resonance by quantum tunnelling. Indeed, the magnitude of 
C ( E , ,  U )  is roughly explained by the tunnelling probability through KAM tori between 
the two primary resonances (Ikeda and Toda 1983). 

As Es exceeds EB the initial state dependence of c ( E s ,  w )  changes from that for 
E ,  < EB. Further, C( E,, w )  varies with the decrease of the Planck constant in a quite 
different manner. This implies that a pure quantum mechanism is replaced by a certain 
classical one. However, just above the threshold, the magnitude of c ( E s ,  w )  is much 
less than that expected from the classical ergodicity. Moreover, the initial state 
dependence is irregular especially in the vicinity of the separatrix and the magnitude 
is scattered in the logarithmic scale. These irregularities are amplified as the Planck 
constant gets smaller. In addition, C ( E s ,  w )  does not seem to tend toward the classical 
ergodicity with the decrease of the Planck constant. It varies quite irregularly and its 
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Figure 6. The dependence of C(E, ,  w )  on the initial state is shown on a logarithmic scale. 
The broken line is the classically expected value. The arrows indicate the boundary energy 
E , .  w = 30.3 (A), 60.3 (+),  80 3 (c). 

variance ranges over the logarithmic scale (see figure 7 ( a ) ) .  This is explained in terms 
of 'vague tori': The spread of the 'vague tori' is not wide enough to connect the two 
primary resonances although they are more extended than the KAM tori. Therefore 
the two resonances are connected by the tail of the localised eigenfunctions correspond- 
ing to 'vague tori'. In addition, these eigenfunctions exhibit irregular features due to 
quantum beats. These irregularities are revealed in the transition probability especially 
for the initial states in the vicinity of the separatrix owing to the existence of the 
stochastic layer. Furthermore, their dependence on the Planck constant is quite 
irregular in the semiclassical limit reflecting the bifurcated multiple branches of 
damaged classical tori. Such irregularities are exponentially amplified at the tail of 
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Figure 7. Dependence of C ( E , ,  w )  on w a h-' .  The average of C ( E , ,  w )  over O S  E, c V 
is plotted on a logarithmic scale. The error bars indicate the maximum and minimum 
values of C ( E , ,  U ) .  The broken line indicates the classically expected value. Note the 
different vertical scales. ( a )  S = 0.8 and ( b )  S = 1.0. 



Quantal version of resonance overlap 3845 

the eigenfunctions corresponding to ‘vague tori’ and prevent a systematic dependence 
of C ( E s ,  w )  on both the initial state and the Planck constant. In other words, the 
effects of quantum tunnelling (the tail) and the classical chaos (the ‘vague tori’) interfere 
with each other at  S=O.8. Thus we cannot identify any clear characteristics which 
can be attributed either to quantum tunnelling or the classical chaos. At S = 1.0 the 
fluctuation of the initial state dependence reduces to the non-logarithmic scale. This 
indicates that quantum tunnelling ceases to play a significant role and that the classical 
chaos becomes predominant. This is due to the appearance of ‘ergodic’ eigenfunctions 
discussed in 0 3. However, these eigenfunctions are accompanied by quantum beats 
randomly distributed over the whole of the chaotic region. They produce non- 
logarithmic scale irregularities of the transition probabilities between the two primary 
resonances. Nevertheless, the relative number of ‘ergodic’ eigenfunctions gradually 
increases with the decrease of the Planck constant. Therefore, the classical ergodicity 
seems to be recovered although the magnitude of c ( E s ,  w )  is still less than that 
expected classically (see figure 7(b ) ) .  In other words we characterise the situation as 
follows: each of the classical paths contributes to the leak of the probability out of 
the domain of the first primary resonance. However, the quantum probability distribu- 
tion cannot closely follow the behaviour of the corresponding classical one due to the 
interference between classical paths. We can call such a property the ‘partial ergodicity’. 

In summary the statistical properties of the quantum system qualitatively reflect 
the classical transition to global chaos as follows: below the threshold the leak of the 
probability through K A M  tori is due to pure quantum tunnelling. Just above the 
threshold the effects of quantum tunnelling and the classical chaos interfere with each 
other. Sufficiently far above the threshold the effect due to classical chaos is pre- 
dominant and the classical ergodicity seems to be recovered. 

5. Conclusion 

We have investigated a quantum version of resonance overlap from various points of 
view. 

Our most important discovery is that the phase space profile of the eigenfunctions 
reflects the stochasticity of classical chaos in their features of random quantum beats. 
Let us briefly summarise how these features of the eigenfunctions emerge with the 
advance of resonance overlap. Below the global stochastisation threshold, eigenfunc- 
tions correspond to quantised K A M  tori and a hierarchy of eigenfunctions reflects the 
self-similar structure of higher-order resonances in the classical phase space. Just 
above the threshold eigenfunctions are localised in the phase space as they correspond 
to quantised ‘vague tori’ in which classical trajectories are confined for finite time 
intervals. However, qualitative features of quantised ‘vague tori’ are different from 
those of quantised K A M  tori. The phase space profile of eigenfunctions is accompanied 
by lumps due to quantum interference. This stems from the fact that classical tori are 
damaged and bifurcated into multiple branches just above the threshold. Nearby, 
branches of a wavefunction on a multiply bifurcated torus interfere with each other 
to form slowly varying beats along the phase space profile of eigenfunctions. As 
resonance overlap advances further, these lumps due to quantum interference are 
distributed much more irregularly over much wider regions. Moreover, some eigenfunc- 
tions extend over the whole of the chaotic region although their relative number is 
limited. This is attributed to the appearance of chaotic global manifolds which have 
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complicated structures composed of infinitely multiplicate branches. On such a mani- 
fold, phase differences of a wavefunction between nearby branches become random. 
Thus a wavefunction interferes with itself to form lumps randomly distributed over 
the chaotic phase space. Therefore, the more stochastic the classical behaviour, the 
more complicated the quantum beat features. We propose that it is appropriate to call 
this phenomenon quantum chaos. 

The statistical properties of the quantum system qualitatively reflect the classical 
transition to global chaos: below the threshold S ,  the quantum probability leaks 
through KAM tori by quantum tunnelling. Just above the threshold the effects of 
quantum tunnelling and  the classical chaos interfere with each other and we cannot 
identify any clear characteristics which can be attributed either to quantum tunnelling 
or to classical chaos. Moreover, we cannot find any tendency toward the recovery of 
the classical ergodicity. This is explained in terms of ‘vague tori’. Sufficiently far above 
the threshold, the effect of classical chaos appears predominant. This is due to the 
appearance of global eigenfunctions which spread over the whole of the chaotic region. 
Further, the classical ergodicity seems to be recovered as the Planck constant becomes 
small. 

Many questions remain to be answered. Among them are the following important 
ones. ( i )  How can we quantise chaotic manifolds semiclassically to obtain eigenfunc- 
tions? (ii) Do  quantum systems exhibit statistical properties which reflect mixing in 
corresponding classical systems? (iii) What are the limitations of the classical-quantum 
correspondence in chaotic systems? How can we understand such limitations from a 
semiclassical viewpoint? (iv) How can we quantitatively characterise the complicated 
features of wavefunctions due  to chaos? These problems will be studied in future 
publications. 
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Appendix 

To obtain the stroboscopic transformation U defined by (3) we numerically integrate 
the time-dependent Schrodinger equation iat,b/at = H (  t ) $ (  t ) .  As a basis to represent 
the Schrodinger equation we choose the eigenfunctions { ul}  of the momentum operator 
I = -ia/aO. Expanding as t,b( t )  = X I  al(  t ) u l  and transforming into the interaction rep- 
resentation bl( t )  = exp(-12t/2i)a,( t )  we immediately obtain the equation of motion 

(2i/ V)bl(  t )  = (1 +e-“”‘) exp[-i(l+$)t]b,+,(  t )  + (1 +elw‘) exp[i(l -+)t]b,- , (  t ) .  ( A l )  

We integrated ( A l )  numerically by the Adams method. In practice we truncated ( A l )  
by setting b,( t )  = 0 for I out of a relevant range of the momentum. Here we choose 
the relevant range two times wider than the classical chaotic region roughly given by 
-24  V G  1s w + 2 J  V. Transforming back to the Schrodinger representation we numeri- 
cally diagonalised U to obtain the eigenfunctions {&} and the eigenvalues {exp iEk}. 
We checked the unitarity of U by examining the orthonormality of the eigenfunctions 
{&} obtained within the decimal of about 12 digits. 
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